#9882. Pond Skater

Pond Skater

题目描述

Snuke, a water strider, lives in a rectangular pond that can be seen as a grid with HH east-west rows and WW north-south columns. Let (i,j)(i,j) be the square at the ii-th row from the north and jj-th column from the west.

Some of the squares have a lotus leaf on it and cannot be entered. The square (i,j)(i,j) has a lotus leaf on it if cijc_{ij} is @, and it does not if cijc_{ij} is ..

In one stroke, Snuke can move between 11 and KK squares (inclusive) toward one of the four directions: north, east, south, and west. The move may not pass through a square with a lotus leaf. Moving to such a square or out of the pond is also forbidden.

Find the minimum number of strokes Snuke takes to travel from the square (x1,y1)(x_1,y_1) to (x2,y2)(x_2,y_2). If the travel from (x1,y1)(x_1,y_1) to (x2,y2)(x_2,y_2) is impossible, point out that fact.

水黾斯努克生活在一个长方形池塘里,这个池塘可以看作是一个网格,东西方向有 HH 行,南北方向有 WW 列。假设 (i,j)(i,j) 是位于北面第 ii 行和西面第 jj 列的正方形。

有些方格上有荷叶,无法进入。如果 cijc_{ij} 为"@",则 (i,j)(i,j) 方格上有荷叶;如果 cijc_{ij} 为".",则 (i,j)(i,j) 方格上没有荷叶。

在一次下棋中,"斯努克 "可以在 11KK (含)之间向北、东、南、西四个方向之一移动。移动不能经过有荷叶的方格。禁止移动到有荷叶的位置或移出池塘。

求斯努克从 (x1,y1)(x_1,y_1)(x2,y2)(x_2,y_2) 所需的最少步数。如果从 (x1,y1)(x_1,y_1)(x2,y2)(x_2,y_2) 是不可能的,请指出这一事实。

输入格式

输入内容按以下格式标准输入:

HH WW KK
x1x_1 y1y_1 x2x_2 y2y_2
c1,1c1,2c_{1,1}c_{1,2} .... c1,Wc_{1,W}
c2,1c2,2c_{2,1}c_{2,2} .... c2,Wc_{2,W}
::
cH,1cH,2c_{H,1}c_{H,2} .... cH,Wc_{H,W}

输出格式

打印 Snuke 从正方形 (x1,y1)(x_1,y_1)(x2,y2)(x_2,y_2) 所需的最少笔画数,如果不可能,则打印 -1

样例 #1

样例输入 #1

3 5 2
3 2 3 4
.....
.@..@
..@..

样例输出 #1

5

样例 #2

样例输入 #2

1 6 4
1 1 1 6
......

样例输出 #2

2

样例 #3

样例输入 #3

3 3 1
2 1 2 3
.@.
.@.
.@.

样例输出 #3

-1

说明

数据规模与约定

  • 1H,W,K1061 \leq H,W,K \leq 10^6
  • H×W106H \times W \leq 10^6
  • 1x1,x2H1 \leq x_1,x_2 \leq H
  • 1y1,y2W1 \leq y_1,y_2 \leq W
  • x1x2x_1 \neq x_2y1y2y_1 \neq y_2
  • ci,jc_{i,j}.@
  • cx1,y1=c_{x_1,y_1} = .
  • cx2,y2=c_{x_2,y_2} = .
  • 输入的所有数字都是整数。

样例 11 解释

最初,斯努克位于 (3,2)(3,2) 方格。他可以通过以下五步到达方格 (3,4)(3, 4)

  • (3,2)(3, 2) 向西走一格,到达 (3,1)(3, 1)

  • (3,1)(3, 1) 向北走两格,到达 (1,1)(1, 1)

  • (1,1)(1, 1) 向东两格,至 (1,3)(1, 3)

  • (1,3)(1, 3) 向东走一格至 (1,4)(1, 4)

  • (1,4)(1, 4) 向南两格,至 (3,4)(3, 4)